4. WIRING PROCEDURE

4.1. ACCESSING THE CONNECTORS

4.1.1. Removing the covers

Note!
Observe the safety instructions and warnings given in this manual. The devices can be opened without the use of force. Only use the tools specified.

See figure 2.2.2 "Drive view \& components" to identify the single part.

Figure 4.1.1: Removing the covers (sizes PX-3 to PX-30)

Sizes $P X-3$ to $P X-15$:
The terminal cover and cable entry plate of the device must be removed in order to fit the electrical connections:

- unscrew the screw (1), remove the cover of devices (2) by pressing on both sides as shown on the above figure (3).
- unscrew the two screws (4) to remove the cable entry plate.

The top cover must be removed in order to mount option cards and change the internal jumper settings:

- remove the keypad and disconnect the connector (5)
- lift the top cover on the bottom side (over the connector level) and then push it to the top (6).

Sizes $P X-20$ to $P X-30$:
The terminal cover and cable entry plate of the device must be removed in order to fit the electrical connections:

- unscrew the two screws (1) and remove the cover of devices
- unscrew the two screws (4) to remove the cable entry plate.

The top cover must be removed in order to mount the option card and change the internal jumper settings:

- remove the keypad and disconnect the connector (5)
- lift the top cover on the bottom side (over the connector level) and then push it to the top (6).

POWERTEC

Figure 4.1.2: Removing the covers (sizes PX-40 to PX-300)

Sizes $P X-40$ to $P X-300$:
The terminal cover of the device must be removed in order to fit the electrical connections: unscrew the two screw (2) and remove the cover (1)
The top cover must be removed in order to mount the option card and change the internal jumper settings: unscrew the two screw (3) and remove the top cover by moving it as indicated on figure (4)

Attention: In order to avoid damage to the drive it is not allowed to transport it by holding the cards!
\qquad

4.2. POWER SECTION

4.2.1. PV33-.. Power card

Figure 4.2.1.1: PV33-1-. power card (sizes PX-3 to PX-7)

Figure 4.2.1.2: PV33-2-.. power card (sizes PX-10 to PX-15)

Figure 4.2.1.3: PV33-3-.. power card (sizes PX-20 and PX-30)

Figure 4.2.1.4: PV33-4-.. power card (sizes PX-40 to PX-100)

Figure 4.2.1.5: PV33-5-.. power card (sizes PX-125 to PX-300)

4.2.2. Terminal Assignment on Power section / Cable Cross-Section

Table 4.2.2.1: Power Section Terminals

Power terminals lay-out

Sizes PX-3 to PX-30: The terminals of the devices are made accessible by removing the cover and the cable entry plate (see section 4.1 , "Accessing the connectors"), on some drive types it is also possible to extract the removable connector .All the power terminals are located on the power card PV33-....shown on previous chapter.
Sizes PX-40 to PX-300: The terminals of the devices are made accessible by removing the cover (see section 4.1, "Accessing the connectors").

Maximum Cable Sizes for power terminals U1, V1, W1, U2, V2, W2, C, D, PE

Table 4.2.2.2: Maximum cable cross section for power terminals

Size		3	5	7	10	15	20	30	40	55
U1,V1,W1,U2,V2,W2,C,D terminals	AWG	14			10		8	6		4
	[mm2]	2			4		8	10	16	25
Tightening torque	[Nm]	0.5 to 0.6					1.2 to 1.5		2	3
PE1, PE2 terminals	AWG	14			10		8	6		
	[mm2]	2			4		8	10	16	
Tightening torque	[Nm]	0.5 to 0.6					1.2 to 1.5		2	3
Size		70	80	100	125	160	190	230	300	* = kcmils
U1,V1,W1,U2,V2,W2,C,D terminals	AWG	2		1/0	2/0	4/0	300*	350*	4xAWG2	
	[mm2]	35		50	70	95	150	185	4x35	
Tightening torque	[Nm]	4			12		10-30			
1, PE2	AWG	6			2					
PL, PE2 terminals	[mm2]	16			50					
Tightening torque	[Nm]	3			4					txv0060

Caution!

Note:
The grounding conductor of the motor cable may conduct up to twice the value of the rated current if there is a ground fault at the output of the Flexmax Drive.

Use $75^{\circ} \mathrm{C}$ copper conductor only.

4.3. REGULATION SECTION

4.3.1. RV33 Regulation Card

UNDER CONTRUCTION

Table 4.3.1.1: LEDs on Regulation card

Designation	Color	Function
RST	red	LED lit during the Hardware Reset
PWR	green	LED lit when the voltage +5 V is present and at correct level
RS485	green	LED is lit when RS485 interface is supplied

Table 4.3.1.2: Test points on Regulation Card RV33

Designation	Function
XY4	Phase current signal (U)
XY5	Reference point

ay4070g
Table 4.3.1.3: Jumpers on Regulation Card RV33
\qquad

Tab. 4.3.1.3 Jumpers on regulation card RV33

Designation	Function	Factory setting
S0	The setting must not be changed	OFF
S1	The setting must not be changed	OFF
S5-S6	Terminating resistor for the serial interface RS485 $\mathrm{ON}=$ Termination resistor IN OFF $=$ No termination resistor	ON
S8	Adaptation to the input signal of analog input 1 (terminals 1 and 2) $\mathrm{ON}=0 . .20 \mathrm{~mA} / 4 . .20 \mathrm{~mA}$ $\mathrm{OFF}=0 . .10 \mathrm{~V} /-10 . .+10 \mathrm{~V}$	OFF
S9	Adaptation to the input signal of analog input 2 (terminals 3 and 4) $\begin{aligned} & \mathrm{ON}=0 . .20 \mathrm{~mA} / 4 . .20 \mathrm{~mA} \\ & \mathrm{OFF}=0 . .10 \mathrm{~V} /-10 . .+10 \mathrm{~V} \\ & \hline \end{aligned}$	OFF
S10	INTERNAL USE	OFF
$\begin{aligned} & \hline \text { S11-S12-S13 } \\ & \text { S14-S15-S16 } \end{aligned}$	Encoder setting ${ }^{(* *)}$ (Position does not matter for resolver use) ON = Sinusoidal encoder OFF = Digital Encoder (including Original Powertec Hall Encoder)	OFF
S17	Monitoring of the C-channel of the digital encoder $\mathrm{ON}=\mathrm{C}$-channel monitored OFF $=$ C-channel NOT monitored (required to be off for single-ended channels)	OFF
$\begin{aligned} & \text { S18-S19 } \\ & \text { S20-S21 } \end{aligned}$	Encoder setting (Postion does not matter for resolver use) A $=\mathrm{Sin} /$ Cos encoder B = Hall sensors (including Original Powertec Hall Encoder)	B
$\begin{aligned} & \hline \text { S22-S23 } \\ & \text { S26-S27 } \end{aligned}$	Resolver and Sin/Cos Settings $\mathrm{A}=\mathrm{Sin} / \mathrm{Cos}$ standard Input (XE connector on RV33) $\mathrm{B}=$ Resolver or $\mathrm{Sin} / \mathrm{Cos}$ on expansion input (XRF connector on EXP-BRS board)	B
S24-S25	INTERNAL USE - Do not modify factory setting	OFF
S29	Jumper to disconnect 0 V (of 24 V) from GND $\mathrm{ON}=\mathrm{OV}$ connected to GND $\mathrm{OFF}=0 \mathrm{~V}$ disconnected from GND	ON
S30	Jumper to disconnect 0 V (of regulation section) from GND $\mathrm{ON}=\mathrm{OV}$ connected to GND $\mathrm{OFF}=0 \mathrm{~V}$ disconnected from GND	ON
S31-S32	INTERNAL USE - Do not modify factory setting	OFF

(*) on multidrop connection the jumpers must be ON only for the last drop of a serial line (**) jumpers on kit EAM_1618 supplied with the drive

Table 4.3.1.4: RV33 Regulation Card Dip Switch S3 Settings

Switch ${ }^{\circ}$	Flexmax Drive model								
	3	5	7	10	15	20	30	40	55
0	OFF	ON	OFF	ON	OFF	ON	OFF	ON	OFF
1	OFF	OFF	ON	ON	OFF	OFF	ON	ON	OFF
2	OFF	OFF	OFF	OFF	ON	ON	ON	ON	OFF
3	OFF	ON							
4	OFF								
5	NOT USED								
6	NOT USED								
7	OFF								
	Flexmax Drive model								
	70	80	100	125	160	190	230	300	
0	ON	OFF	ON	OFF	ON	OFF	ON	OFF	
1	OFF	ON	ON	OFF	OFF	ON	ON	OFF	
2	OFF	OFF	OFF	ON	ON	ON	ON	OFF	
3	ON	OFF							
4	OFF	ON							
5	NOT USED								
6	NOT USED								
7	OFF								

The devices are factory set accordingly. When fitting a regulation card as a spare, remember to set dip-switch S3 accordingly.

4.3.2. Terminal Assignments on regulation section

Table 4.3.2.1: Plug-in Terminal Strip Assignments

Analog output 1	Programanalog output; def.setting: Motor speed. Ref. point tem22	$\pm 70 \mathrm{~V} / 5 \mathrm{~mA}$
OV	Intemal OV and referencepoint for teminals 21 and 23	-
A nalog output 2	Programanalog output; def.setting: Motor aurrent Ref. point: temm22	$\pm 10 \mathrm{~V} / 5 \mathrm{~mA}$
BU comm. output	VeCon controlled BU-... braking units command. Ref. point term27.	+28V/15mA
OV 24	Reference point for BU-... command, terminal 26	-
RESERVED		-
RESERVED		
Digital input 4	Defailed toDriveJog-, 24vdctoJog 0vdctostop,	+30 V$3.2 \mathrm{~mA} @ 15 \mathrm{~V}$
Digital input 5	Programmable digital input; default setting: none	
Digital input 6		5mA @ 24V
Digital input 7	Defaited to DriveReset, 24 vacto Reset, Ovdcto dlowrun,	6.4mA @ 30V
$\begin{aligned} & \text { Digital output } \\ & 0 \end{aligned}$	Programmabledigital output; default setting: none	+30V/40mA
Digital output 1		
Supply D 0	Supply input for digital outputs onterminals 41/42. Ref. point: term16.	+30V/80mA
M otor PTC	Motor PTC sensing for ovetemperature (cutoff R1k if used). If a Klixon thermal switch is used, remove the 1 k resistor and comect the switchto 78, 79 with the resistor in series with the resistor in series, connected to 79.	1.5 mA

Maximum Cable Sizes for control terminals

Table 4.3.2.2: Maximum permissible cable cross-section on the plug-in terminals of the regulator section

Terminals	Maximum Permissible Cable Cross-Section			Tightening torque [Nm]
	[mm^{2}]		AWG	
	flexible	multi-core		
$1 . . .79$	$0.14 \ldots 1.5$	0.14 ... 1.5	$28 . . .16$	0.4
80 ... 85	0.14 ... 1.5	0.14 ... 1.5	$28 . .16$	0.4

The use of a $75 \times 2.5 \times 0.4 \mathrm{~mm}(3 \times 0.1 \times 0.02$ inch $)$ flat screwdriver is recommended. Remove $6.5 \mathrm{~mm}(0.26$ inch) of the insulation at the cable ends. Only one unprepared wire (without ferrule) should be connected to each terminal point.

Maximum Cable Length

Table 4.3.2.3: Maximum Control Cable Lengths

Cable section $\left[\mathrm{mm}^{2}\right]$	0.22	0.5	0.75	1	1.5
Max Length $\mathrm{m}[$ feet $]$	$27[88]$	$62[203]$	$93[305]$	$125[410]$	$150[492]$

Potentials of the control section

The potentials of the regulation section are isolated and can be disconnected via jumpers from ground. The connections between each potential are shown in Figure 4.3.2.1.

The analog inputs are designed as differential amplifiers.

The digital inputs are optocoupled with the control circuit. The digital inputs (terminals 12 to 15 and 36 to 39) and digital outputs have terminal 16 as a common reference point.

The analog outputs are not designed as differential amplifiers and have a common reference point (terminal 22).

The analog outputs and the $\pm 10 \mathrm{~V}$ reference point have same potential (terminal 22 and 9).

The digital outputs are optocoupled with the control circuit. Terminals 41 to 42 have terminal 16 as a common reference point and terminal 46 as common supply.

The brake unit command has reference point (terminal 27) connected to reference point +24 V (terminal 18).

Figure 4.3.2.1: Potentials of the control section

4.3.3. XE Connector Assignments

The connection with the drive is through a 15 pole high density sub-D connector (VGA type). Please note that it is mandatory to use a shielded cable with at least 80% coverage. The shield should be connected to ground on both sides of the connector, but not grounded at the motor end.

Table 4.3.3.1: XE Connector Assignments

Assignment		Function	Description
1	ENC B-	Incremental Encoder B-	1V pk-pk / 0...5V
2			
3	ENC I+	Incremental Encoder I+	1V pk-pk / 0...5V
4	ENC I-	Incremental Encoder I-	1V pk-pk / 0...5V
5	ENC A+	Incremental Encoder A+	1V pk-pk / 0...5V
6	ENC A-	Incremental Encoder A-	1V pk-pk / 0...5V
7	GND	Encoder Supply 0V reference	O V
8	ENC B+	Incremental Encoder B+	1 V pk-pk / 0...5V
9	AUX+	Encoder Supply + 5V	$+5 \mathrm{~V} / 200 \mathrm{~mA}$
10	HALL 1	Hall 1 Positive / Analog Encoder Sin +	1V pk-pk / 0...5V
11	HALL 1-	Hall 1 Negative / Analog Encoder Sin -	1V pk-pk / 0...5V
12	HALL 2	Hall 2 Positive / Analog Encoder Cos +	1V pk-pk / 0...5V
13	HALL 2-	Hall 2 Negative / Analog Encoder Cos -	1V pk-pk / 0...5V
14	HALL 3	Hall 3 Positive	1V pk-pk / 0...5V
15	HALL 3-	Hall 3 Negative	1V pk-pk / 0...5V

4.3.4. XFR Connector Assignments (EXP-BRS expansion board)

The connection with the drive is through a 15 pole high density sub-D connector (VGA type). Please note that for resolver feedback it is mandatory to use a twisted pair cable with shields on each pair and an overall shield.

Table 4.3.4.1: XFR Connector Assignments

Assignment		Function	Description
1	ENC B-	Incremental Encoder B-	$1 \mathrm{~V} \mathrm{pk-pk} / 0 \ldots 5 \mathrm{~V}$
2			$1 \mathrm{~V} \mathrm{pk-pk} / 0 \ldots .5 \mathrm{~V}$
3	ENC I+	Incremental Encoder I+	$1 \mathrm{~V} \mathrm{pk-pk} / 0 \ldots .5 \mathrm{~V}$
4	ENC I-	Incremental Encoder I-	$1 \mathrm{~V} \mathrm{pk-pk} / 0 \ldots .5 \mathrm{~V}$
5	ENC A+	Incremental Encoder A+	$1 \mathrm{~V} \mathrm{pk-pk} / 0 \ldots 5 \mathrm{~V}$
6	ENC A-	Incremental Encoder A-	O V
7	GND	Encoder Supply 0V reference	$1 \mathrm{~V} \mathrm{pk-pk} / 0 \ldots .5 \mathrm{~V}$
8	ENC B+	Incremental Encoder B+	$+5 \mathrm{~V} / 200 \mathrm{~mA}$
9	AUX+	Encoder Supply + 5V	Analog
10	R_SIN+	Resolver Input Sin+	Analog
11	R_SIN-	Resolver Input Sin-	Analog
12	R_COS+	Resolver Input Cos+	Analog
13	R_COS-	Resolver Input Cos-	$6 \mathrm{~V} \mathrm{rms} / 50 \mathrm{~mA} \mathrm{rms} \mathrm{max}$
14	RESEX+	Resolver Excitation +	$6 \mathrm{~V} \mathrm{rms} / 50 \mathrm{~mA} \mathrm{rms} \mathrm{max}$
15	RESEX-	Resolver Excitation	

4.3.5. Feedback /Drive connections

TheFlexmax drivecan handl eseven different feedback devices (seeparagraph 3.4.2), all selectabl ethrough thesetting of jumpers on the regulation board.
Thejumper setting will beasfollows:
Table 4.3.5.1: Resolver/Encoder/Drive connections

Encoder/Jumpers settings	S11	S12	S13	S14	S15	S16	S17	S18	S19	S20	S21	S22	S23	S26	S27
SESC	ON	ON	ON	ON	ON	ON	-	A	A	A	A	A	A	A	A
DEHS	OFF	OFF	OFF	OFF	OFF	OFF	ON	B	B	B	B	-	-	-	-
SEHS	ON	ON	ON	ON	ON	ON	-	B	B	B	B	-	-	-	-
RES	-	-	-	-	-	-	-	-	-	-	-	B	B	B	B
ABSM															

Note: A "-" in thetablemeans that the position of thejumper does not matter. For instance, when setting up for a resolver, it does not matter where any of the jumpers are except S22, S23, S26, and S27. In the following paragraphs are specified the connections between Flexmax drives and thefeedback sensors installed on standard Powertec motors.

4.3.5.1. Original Pow ertec Hall Effect Encoder

Table 4.3.5.1.1: Hall encoder 4 pole 30 ppr, 6 pole 45 ppr, 8 pole 60 ppr Connections

Original Hall Effect E ncoder	Flexmax XE connector on R V33 regulation board	Powertec M otor Terminal Block
H S-1 (commutation) Brown	Pin 13	2
H S-2 (commutation) Orange	Pin 11	1
H S-3 (commutation) Y ellow	Pin 15	5
H S-4 (Speed A) Blue	Pin 6	4
HS-5 (speed B) Green	Pin 1	7
+5V Red	Pin 9,10,12,14	3
Common Black	Pin 7	6
	Pins 5 \& 8 together then through 680 ohm resistor to 3 on M otor term blk	3
	Pins 5 \& 8 together then through another 680 ohm to 6 on M tr terminal block, see drawing for detail	6
		Connect 680 ohm ¼W resistor from 3 to 4
		Connect 680 ohm $1 / 4 \mathrm{~W}$ resistor from 3 to 7
K lixon M otor Thermal (V iolet)	Pin 78, X 1 Terminals	8
Klixon M otor Thermal (White)	Pin 79, X 1 Terminals	9
Note: R emove 1 k resis across 78 -79 and wire resistor in Series with wire from thermal to 79 , wire other side of thermal to 78 . U se shielded wire, ground shield at drive end only.		

Back View of VGA D-sub Connector (solder side)

4.3.5.2. TWO POLE RESOLVER (RES)

Table 4.3.5.2.1: Two pole resolver

Powertec Motor Resolver Wires	Flexmax Drive XFR connector on EXP-BRS board	Terminals in Powertec Motor Terminal Box Strip
Yellow	PIN 10 Resolver Sin +	3
Blue	PIN 11 Resolver Sin -	4
Black	PIN 12 Resolver Cos +	2
Red	PIN 13 Resolver Cos -	1
Red/Wht	PIN 14 Resolver Excitation +	6
Black/Wht	PIN 15 Resolver Excitation -	7
Shield	Solder shield to body of connector.	5 (open, NC)
Klixon Motor Thermal (Violet)	Pin 78, X1 Terminals on Drive	10 (do not ground)
Klixon Motor Thermal (White)	Pin 79, X1 Terminals on Drive	8
Note: Remove 1k resis across 78-79 and wire resistor in Series with wire from thermal to 79, wire other side of thermal to 78. Use shielded wire, ground shield at drive end only.		

Requirements:

Sinusoidal encoders (XE connector on Regulation card)

max. frequency
Number of pulses per revolution
Channels
Power supply
Load capacity

80 KHz (select the appropriate number of pulses depending on required max. speed)
$\min 600, \max 9999$
two-channel, differential
+5 V (Internal supply)
$>8.3 \mathrm{~mA}$ pp per channel

Digital encoders (XE connector on Regulation card)
max. frequency
Number of pulses per revolution Channels

Power supply

150 KHz (select the appropriate number of pulses depending on required max. speed)
$\min 600, \max 9999$

- two-channel, differential A / $\bar{A}, B / \bar{B}, C / \bar{C}$). An encoder loss detection is possible via firmware setting. - two channel, (A,B). Encoder loss detection is not possible.

Load capacity $\quad>4.5 \mathrm{~mA} / 6.8 \ldots 10 \mathrm{~mA}$ per channel

Resolver interface (XFR connector on EXP-BRS board)

Resolver excitation	sinusoidal
Resolver excitation voltage	6 V rms
Resolver excitation current	50 mA rms max
Resolver excitation frequency	8 KHz
Resolver input	differential
Resolver tranformation ratio	between 0,5 and 1
resolver input impedence	$4 \mathrm{k} \Omega$
Suggested cable	Belden 9504, 4 twisted pair, for runs of less than 100 ,
	Recommend special shielded twisted pair, low capacitance, for longer runs, contact factory.

Terminals for external encoder connections

Male terminal type:
Connector cover:

15 pole high density (VGA type)
Standard 9 pole type low profile (Example manufacturer code: AMP 0-748676-1, 3М 3357-6509)

Terminals for resolver connections

XFR Connector:
XFR Connector cover:

15 pin high density (VGA type), male
Standard 9 pin low profile (Example manufacturer code: AMP 0-748676-1, 3M 3357-6509)

4.3.6. ENCODER SIMULATION

On the expansion board EXP-BRS there is avaliable an incremental encoder output, with TTL Line Driver levels, that can be used as simulation of the servomotor feedback device.
This function is performed by the microprocessor and it is possible to simulate an encoder output with a programmable number of pulses/rev.
The output interface is optically isolated, so the encoder output must be supplied with an external $15 \ldots 24 \mathrm{~V}$ supply that can be connected to terminals 96 and 97 of the EXP-BRS expansion board.

The encoder output signals are avaliable on the XFO connector with the following connection diagram :
Table 4.3.6.1: Encoder simulation

XFO connector on EXP-BRS	Function	Description
PIN 1	B-	Digital Encoder Simulation. B- channel
PIN 2		
PIN 3	Z+	Digital Encoder Simulation. O- channel
PIN 4	Z-	Digital Encoder Simulation. O+ channel
PIN 5	A+	Digital Encoder Simulation. A+ channel
PIN 6	A-	Digital Encoder Simulation. A- channel
PIN 7		
PIN 8	B+	Digital Encoder Simulation. B+ channel
PIN 9		
PIN 10		
PIN 11		
PIN 12		
PIN 13		
PIN 14		
PIN 15		

Please note that jumper S2 and S3 on the EXP-BRS optional board must be OFF.

Digital encoder simulation

Interface	opto-isolated
Simulation	differential digital incremental
Standard outputs	A+, A-, B+, B-, I+ , I-
Outputs levels	Standard TTL
Voltage limits on the TTL high-state outputs (on the pins)	
($\mathrm{U}_{\text {high }}$ TTL)	$<2,5 \mathrm{~V}$
Voltage limits on the TTL low-state outputs (on the pins)	
($\mathrm{U}_{\text {low }}$ TTL)	$<0,5 \mathrm{~V}$
TTL load capacity	20 mA max. each
Parallel connection of standard Flexmax inputs	
with a TTL outputs	3 inputs
Max. frequency	150 KHz
Encoder simulation power supply	5 V obtained with an external $15 . .24 \mathrm{~V}$
Max absorption of the encoder simulation power supply 140mA@5V	
Mechanics	Male high density 15-pole D-sub connector (type VGA) for standard inputs and extractable terminals to be connected to a $0,14 . .1,5 \mathrm{~mm} 2$ power supply section
Special functions	pulse/rev regulation of the simulated encoder wirh parameter.

Terminals for encoder simulation connections

XFO Connector
XFO Connector cover

15 pin high density (VGA type), female
Standard 9 pin low profile (Example manufacturer code: AMP 0-748676-1, 3M 3357-6509)

4.4. SERIAL INTERFACE

4.4.1. Serial Interface Description

The RS 485 serial interface enables data transfer via a loop made of two symmetrical, twisted conductors with a common shield. The maximum transmission distance is 1200 m (3936 feet) with a transfer rate of up to $38,400 \mathrm{KBaud}$. The transmission is carried out via a differential signal. RS 485 interfaces are bus-compatible in half-duplex mode, i.e. sending and receiving take place in sequence. Up to 31 Flexmax devices (up to 128 address selectable) can be networked together via the RS 485 interface. Address setting is carried out via the Device address parameter. Further information concerning the parameters to be transfered, their type and value range is given in the table contained in section 8, "Parameter lists".

Figure 4.4.1.1: RS485 Serial Interface

The RS 485 on the Flexmax series devices is located on the Regulation card in the form of a 9-pole SUB-D socket connector (XS).The communication may be with or without galvanic isolation: when using galvanic isolation an external power supply is necessary $(+5 \mathrm{~V})$. Communication without galvanic isolation is suggested only in case of temporary connections for setup with one drive connected. The differential signal is transferred via PIN 3 (TxA/RxA) and PIN 7 (TxB/RxB). Bus terminating resistors must be connected at the physical beginning and end of an RS 485 bus in order to prevent signal reflection. The bus terminating resistors on Flexmax drives are connected via jumpers S 5 and S 6 . This enables a direct point-to-point connection with a PLC or PC.

Note! Ensure that only the first and last drop of an RS 485 bus have a bus terminating resistor (S5 and S6 mounted). In all other cases (within the line) jumpers S5 and S6 must not be mounted.

A connection point to point can be done using "PCI-485" option interface, without jumper setting.
For multidrop connection (two or more drive), an external power supply is necessary (pin $5 / 0 \mathrm{~V}$ and pin 9 / +5 V).
Pins 6 and 8 are reserved for use with the "PCI- 485 " interface card.

When connecting the serial interface ensure that:

- only shielded cables are used
- power cables and control cables for contactors/relays are routed separately

Note! See the manual "SLINK3 Communication protocol" for more detail.

4.4.2. RS 485 Serial Interface Connector Description

Table 4.4.2.1: Assignment of the plug XS connector for the RS 485 serial interface

Designation	Function	I/Q	Elec. Interface
PIN 1	Internal use	-	-
PIN 2	Internal use	-	-
PIN 3	RxA/TxA	I/Q	RS485
PIN 4	Internal use	-	-
PIN 5	0V (Ground for 5 V)	-	Power supply
PIN 6	Internal use	-	-
PIN 7	RxB/TxB	I/Q	RS 485
PIN 8	Internal use	-	-
PIN 9	+5 V	-	Power supply

$\mathrm{I}=$ Input $\quad \mathrm{Q}=$ Output

ио！пวәииоэ لـ！

4.6. CIRCUIT PROTECTION

4.6.1. External fuses for the power section

The drive must be fused on the AC Input side. Fuses, circuit breakers and slow protective switches can be used. Superfast semiconductor fuses provide a greater degree of protection.

Note! If the terminals of the DC Link circuit (C +and D -) are connected with external devices, semiconductor fuses must always be fitted on the AC input side. This, for example, is the case with:

- connected external braking units (BU...)
- coupled DC Link circuits of several inverters
- connected external capacitors

Connections with three-phase inductance on AC input are not essential but will improve the DC link capacitors lifetime and drive reliability in unusual power events.

Table 4.6.1.1: External Fuse Types for AC input

Drive type	Connections without three-phase reactor on AC input				Connections with three-phase reactor on $A C$ input				
	DC link capacitors life time [h]	Europe	USA		DC link capacitors life time [h]	Europe	USA		
3	25000	GRD2/10 or Z14GR10	A70P10	FWP10	50000	GRD2/10 or Z14GR10	A70P10	FWP10	
5		GRD2/16 or Z14GR16	A70P20	FWP20		GRD2/10 or Z14GR10	A70P10	FWP10	
7	10000					GRD2/16 or Z14GR16	A70P20	FWP20	
10	25000	GRD2/25 or Z14GR25	A70P25	FWP25		GRD2/20 or Z14GR20	A70P20	FWP20	
15	10000	GRD3/35 or Z22GR40	A70P35	FWP35		GRD2/25 or Z14GR25	A70P25	FWP25	
20	25000	GRD3/50 or Z22GR40	A70P40	FWP40		GRD3/35 or Z22GR40	A70P35	FWP35	
30	10000	GRD3/50 or Z22GR50	A70P40	FWP50		GRD3/50 or Z22GR50	A70P40	FWP40	
40	10000	For these types an external reactor is mandatory if the AC input impedence is equal or less than 1%			25000	GRD3/50 or Z22GR50	A70P50	FWP50	
55					$\begin{gathered} \hline \text { S00üf } 1 / 80 / 80 \mathrm{~A} / 660 \mathrm{~V} \text { or } \\ \text { Z22gR80 } \\ \hline \end{gathered}$	A70P80	FWP80		
70					S00üf1/80/100A/660V or M00üf01/100A/660V	A70P100	FWP100		
80					S00üf 1/80/160A/660V or	A70P175	FWP175		
100					M00üf01/160A/660V				
125					S1üf1/110/250A/660V or	A70P300	FWP300		
160					M1üf1/250A/660V				
190					S2üf1/110/400A/660V or M2üf1/400A/660V	A70P400	FWP400		
230									
300									

Fuse manufacturers: Type GRD2... (E27), GRD3... (E33), M... (blade fuses), Z14... $14 \times 51 \mathrm{~mm}, \mathrm{Z} 22 \ldots 22 \times 58 \mathrm{~mm}$, S.... Jean Müller, Eltville

A70P...
FWP...

Gould Shawmut
Bussmann

Note! The technical data of the fuses, e.g. dimensions, weights, heat dissipation, auxiliary contactors, are found in the manufacturers data sheets.

4.6.2. External fuses for the power section DC input side

Use the following fuses when an external bus supply is used. Powertec can provide an external supply if needed.

Table 4.6.2.1: External fuses type for DC input

Drive type	Fuses type		
	Europe	USA	
$\mathbf{3}$	Z14GR10	A70P10	FWP10A14F
$\mathbf{5}$	Z14GR16		
$\mathbf{7}$	Z14GR20		
$\mathbf{1 0}$	Z14GR32	A70P30-1	FWP30A14F
$\mathbf{1 5}$	Z14GR40	A70P40-4	FWP40B
$\mathbf{2 0}$	Z22GR63	A70P60-4	FWP60B
$\mathbf{3 0}$	S00üF1/80/80A/660V	A70P80	FWP80
$\mathbf{4 0}$	S00üF1/80/100A/660V	A70P100	FWP100
$\mathbf{5 5}$	S00üF1/80/125A/660V	A70P150	FWP150
$\mathbf{7 0}$	S00üF1/80/160A/660V	A70P175	FWP175
$\mathbf{8 0}$	S00üF1/80/200A/660V	A70P200	FWP200
$\mathbf{1 0 0}$	S1üF1/110/250A/660V	A70P250	FWP250
$\mathbf{1 2 5}$	S1üF1/110/315A/660V	A70P350	FWP350
$\mathbf{1 6 0}$	S2üF1/110/400A/660V	A70P400	FWP400
$\mathbf{1 9 0}$	S1üF1/110/500A/660V	A70P500	FWP500
$\mathbf{2 3 0}$			txv0160
$\mathbf{3 0 0}$			

Fuse manufacturers:

Type Z14..., Z22, S00 ..., S1..., S2...
A70P...
FWP...

Jean Müller, Eltville
Gould Shawmut
Bussmann

Note! The technical data of the fuses, e.g. dimensions, weights, heat dissipation, auxiliary contactors, are found in the manufacturers data sheets.

4.6.3. Internal fuses

Table 4.6.3.1: Internal

Drive type	Designation	Protection of	Fuse (source)	Fitted on:
$\begin{aligned} & \text { PX-40 } \\ & \text { to } \\ & \text { PX-300 } \end{aligned}$	F1	+24V	2 A fast $5 \times 20 \mathrm{~mm}$ (Bussmann: SF523220 or Schurter: FSF0034.1519 or Littlefuse: 217002)	Power card PV33-4-"D" and higher
				Power card PV33-5-"B" and higher
PX-3 to PX-300	F1	+24V	Resettable fuse	Regulation card RV33-1C and higher
$\begin{gathered} \mathrm{PX}-125 \\ \text { to } \\ \mathrm{PX}-230 \end{gathered}$	F3	Fans transformer	2.5A 6.3x32 (Bussmann: MDL 2.5, Gould Shawmut: GDL1-1/2, Siba: 70059 76.2,5 , Schurter: 0034.5233)	Bottom cover (power terminals side)

4.7. CHOKES / FILTERS

Note!

Note!

A three-phase inductance should be connected on the AC Input side in order to limit the input RMS current of Flexmax series Drives. The inductance can be provided by an AC Input choke or an AC Input transformer. While the drive will work without the inductance, capacitor life will be shortened and general reliability will be less.

For the use of output sinusoidal filters, please contact the factory..

4.7.1. AC Input Chokes

Table 4.7.1.1: 3-Phase AC Input Chokes

Drive type	Three-phase choke type
3	LR3y-1015
5	LR3y-1022
7	LR3y-1030
10	LR3y-2055
15	LR3y-2075
20	LR3y-3110
30	LR3y-3150
40	LR3-022
55	LR3-030
70	LR3-037
80	LR3-055
100	LR3-090
125	
160	
190	
230	
300	

txv0180

For all the sizes an input choke is strongly reccomended in order to:

- prolong the life time of the DC link capacitors and the reliability of the input rectifier.
- reduce the AC mains harmonic distortion
- reduce the problems due to a low impedence AC mains ($\lambda \varepsilon \sigma \sigma \tau \eta \alpha \vee 1 \%$).

Note! The current rating of these inductors (reactors) is based on the nominal current of standard motors, listed in table 2.3.2.1 in section 2.3.2, "AC Input/Output Connection".

4.7.2. Output Chokes

The Flexmax Drive can be used with general purpose standard motors or with motors specially designed for Drive use. The latter usually have a higher isolation rating to better withstand PWM voltage.

Following is an example of industry "standards" for motors::

Low voltage general purpose standard motors

VDE 0530:	max peak voltage	1 kV
	max. dV/dt	$500 \mathrm{~V} / \mathrm{us}$
NEMA MG1 part 30:	max. peak voltage	1 kV
	min. rise time	2 us

Low voltage motors for use on inverters
NEMA MG1 part 31: max. peak voltage 1.6 kV
\min. rise time 0.1 us .

Motors purchased new from Powertec do not require any specific filtering of the voltage waveform from the Drive. For old motors (older than 1993 with original winding), especially with long cable runs (typically over 30 m [98.5 feet]) an output choke is recommended to maintain the voltage waveform within the specified limits. Suggested choke ratings and part numbers are listed in table 4.7.2.1. When replacing old drives with the Flexmax, check to be sure the motor insulation system is capable of IGBT operation.
The rated current of the filters should be approx. 20% above the rated current of the frequency Drive in order to take into account additional losses due to PWM waveform.

Table 4.7.2.1: Recommended values for output chokes

Drive type	Three-phase choke type
3	
5	
7	
10	LU3-005
15	LU3-011
20	LU3-015
30	LU3-02
40	LU3-030
55	LU3-037
70	LU3-055
80	LU3-090
100	
125	
160	
190	
230	
300	

txv0190

Note! When the Drive is operated at the rated current and at 50 Hz , the output chokes cause a voltage drop of approx. 2% of the output voltage. Slightly less drop will occur at 60 Hz .

4.7.3. Interference Suppression Filters

Flexmax drives must be equipped with an external EMI filter in order to reduce the radiofrequency emissions on the mains line as required for operation in Europe. US rules right now do not dictate miniumum EMI conduction to the line. The filter selection is depending on the drive size and the installation environment. For this purpose see the "EMC Guidelines" instruction book.
In the Guide it is also indicated how to install the drive in an enclosure (connection of filter and mains reactors, cable shield, groundig, etc.) in order to make it EMC compliant according the EMC Directive 89/ $336 / \mathrm{EEC}$. The document describes the present situation concerning the EMC standards and the compliance tests made on the drives as required by CE.

4.8. FAST LINK CONNECTIONS

On the EXP-BRS board a fast serial connection is available, that is optimized to exchange I/O and regulation parameters between different drives. This synchronous serial interface is named FAST LINK. This interface can have two different connection architectures :

- Multi Point : one drive is configured as master (transmitting) and the others as slaves (receiving).
- Peer-to-Peer: This software is not yet released, but is supported by the existing hardware.

Each EXP-BRS board has two connectors, one is used as input (XT-IN) and the other as signal output (XTOUT).

Figure 4.8.1: XT-IN Connector (FAST LINK Input)

PIN	Function	Description
1	DT_IN+	Data input Fast Link +
2	DT_IN-	Data input Fast Link -
3	CLK_IN+	Clock input Fast Link +
4	CLK_IN-	Clock input Fast Link -

Figure 4.8.2: XT-OUT Connector (FAST LINK Output)

PIN	Function		Description
1	DT_OUT+	Data output Fast Link +	
2	DT_OUT-	Data output Fast Link -	
3	CLK_OUT+	Clock output Fast Link +	
4	CLK_OUT-	Clock output Fast Link -	txv0210

4.9. BRAKING UNITS

In oversynchronous or regenerative operation, the frequency-controlled three-phase motor feeds energy back to the DC link circuit via the Drive. This creates an increase in the intermediate circuit voltage. Braking units (BU) are therefore used in order to prevent the DC voltage rising to a value causing the drive to trip. When used, these activate a braking resistor that is modulated across the capacitors of the intermediate circuit. The feedback energy is converted to heat via the braking resistor $\left(\mathrm{R}_{\mathrm{BR}}\right)$, thus providing very short deceleration times and restricted four-quadrant operation.

Figure 4.9.1: Operation with Braking Unit (Principle)

All Flexmax drives can be equipped with an external braking unit (BU-32.xx...) connected to terminals C (+Bus) and D (-Bus).

Note!
When the internal braking unit is present, or when circuit terminals C and D are connected to external devices, the AC Input must be protected with superfast semiconductor fuses! Observe the mounting instruction concerned.

4.9.1. Internal braking unit

The Internal Braking Unit is included as standard (up to size PX-55). The braking resistor is optional and has always to be mounted externally. For parameter settings refer to the section $\mathbf{9 . 2 8}$ "Braking unit". The figure below shows the configuration for internal brake unit operation.

Figure 4.9.1.1: Connection with internal Braking Unit and external braking resistor

4.9.2. External braking resistor

Recommended resistors for use with internal braking unit:

Table 4.9.2.1: Lists and technical data of the external standard resistors

$\begin{aligned} & \text { Drive } \\ & \text { Type } \end{aligned}$	Resistor Type	$\begin{aligned} & \hline \mathbf{P}_{\mathrm{NBR}} \\ & {[\mathbf{k W}]} \end{aligned}$	$\begin{gathered} \mathrm{R}_{\mathrm{BR}} \\ {[\mathrm{Ohm}]} \end{gathered}$	$\begin{aligned} & \hline \mathbf{E}_{\mathrm{BR}} \\ & {[\mathbf{k J}]} \end{aligned}$
3	MRI/T600 100R	0.6	100	22
5				
7				
10	MRI/T900 68R	0.9	68	33
15				
20	MRI/T1300 49R	1.3	49	48
30	MRI/T2200 28R	2.2	28	82
40	MRI/T4000 15R4	4	15.4	150
55	MRI/T4000 11R6	4	11.6	150
70	MRI/T4000 11R6	4	11.6	150
80	MRI/T8000 7R7	8	7.7	220
100	MRI/T8000 7R7	8	7.7	220

Parameters description:
$\mathbf{P}_{\text {NBR }}$
$\mathbf{R}_{\text {BR }}$
$\mathbf{E}_{\text {BR }}$
$\mathbf{P}_{\text {PBR }}$
$\mathbf{T}_{\text {BRL }}$

Nominal power of the braking resistor
Braking resistor value
Max surge energy which can be dissipated by the resistor
Peak power applied to the braking resistor
Maximum braking time in condition of limit operating cycle (braking power
$=\mathbf{P}_{\mathrm{PBR}}$ with typical triangular profile)
$\mathbf{T}_{\mathrm{BRL}}=2 \frac{\mathbf{E}_{\mathrm{BR}}}{\mathbf{P}_{\mathrm{PBR}}}=[\mathbf{s}]$

Figure 4.9.2.2: Limit operating braking cycle with typical triangular power profile
\qquad
$\mathbf{T}_{\mathbf{C L}} \quad$ Minimum cycle time in condition of limit operating cycle (braking power $=\mathbf{P}_{\text {PBR }}$ with typical triangular profile)
$\mathrm{T}_{\mathrm{CL}}=\frac{1}{2} \mathrm{~T}_{\mathrm{BRL}} \frac{\mathrm{P}_{\mathrm{PbR}}}{\mathrm{P}_{\mathrm{NBR}}}=[\mathrm{s}]$
The BU overload alarm occurs if the duty cycle exceeds the maximum data allowed in order to prevent possible damage to the resistor.

Resistor model: Standard resistor data

Example code: MRI/T900 68R

$$
\begin{aligned}
& \text { MRI = resistor type } \\
& 900=\text { nominal power }(900 \mathrm{~W}) \\
& \mathrm{T}=\text { with safety thermostat } \\
& 68 \mathrm{R}=\text { resistor value }(68 \Omega)
\end{aligned}
$$

Note! The suggested match of resistor-model and inverter-size, allows a braking stop at nominal torque with duty cycle $\mathrm{T}_{\mathrm{BR}} / \mathrm{T}_{\mathrm{C}}=20 \%$

Where:

$$
\begin{aligned}
& \mathbf{T}_{\mathbf{B R}}=\text { Braking time } \\
& \mathbf{T}_{\mathbf{C}}=\text { Cycle time }
\end{aligned}
$$

Figure 4.9.2.3: Braking cycle with $T_{B R} / T_{c}=20 \%$

These resistors, whose technical data are reported in the table 4.9.2.1, have been sized to tolerate an overload equal to 4 times their nominal power for 10 seconds.
In any event they can tolerate also an overload, whose energy dissipation is the same of the maximum power level defined by:

$$
\mathbf{P}_{\mathrm{PBR}}=\frac{\mathbf{V}_{\mathrm{BR}}{ }^{2}[\mathrm{~V}]}{\mathbf{R}_{\mathrm{BR}}[\mathrm{Ohm}]}=\mathbf{W}
$$

Where: $\quad \mathbf{V}_{\text {BR }}=$ braking unit threshold
With reference to the figure 4.9.2.4, where the power profile is the typical triangular one, the following example can be taken into consideration (see also table 4.9.2.1).

Resistor model: MRI/T600 100R

$$
\begin{aligned}
& \text { Nominal power } \mathbf{P}_{\mathrm{NBR}}=600[\mathrm{~W}] \\
& \text { Maximum energy } \mathbf{E}_{\mathrm{BR}}=4 \times 600[\mathrm{~W}] \times 10[\mathrm{~s}]=24000[\mathrm{~J}] \\
& \text { Inverter mains supply }=460 \mathrm{~V} \\
& \text { From table 5.8.2.2: } \mathbf{V}_{\mathrm{BR}}=780 \mathrm{~V} \\
& \mathbf{P}_{\text {PBR }}=\frac{\mathbf{V}_{\text {BR }}{ }^{2}}{\mathbf{R}_{\text {BR }}}=\frac{\mathbf{7 8 0}^{\mathbf{2}}}{\mathbf{1 0 0}}=\mathbf{6 0 8 4}[\mathbf{W}] \quad \mathbf{T}_{\text {BRL }}=\mathbf{2} \frac{\mathbf{E}_{\text {BR }}}{\mathbf{P}_{\text {PBR }}}=\mathbf{2} \frac{\mathbf{2 4 0 0 0}}{\mathbf{6 0 8 4}}=\mathbf{7 . 8}[\mathbf{s}]
\end{aligned}
$$

It is necessary to consider the following relation:
A) If $\mathbf{T}_{\mathrm{BR}}<\mathbf{E}_{\mathrm{BR}} / \mathbf{P}_{\mathrm{NBR}}$ verify:

1) $\quad \mathbf{P}_{\mathrm{MB}}<\mathbf{2} * \mathbf{E}_{\mathrm{BR}} / \mathbf{T}_{\mathrm{BR}} \quad$ Where: \mathbf{P}_{MB} is the average power of the cycle (see.fig. 4.9.2.4)
2) $\quad \frac{\mathbf{P}_{\text {Mb }} X T_{\text {BR }}}{2 \mathbf{T C}_{\mathrm{C}}} \leq \mathbf{P}_{\text {NBR }}$

The average power of the cycle must not be higher than the nominal power of the resistor.
B) If $\mathbf{T}_{\mathrm{BR}}>\mathbf{E}_{\mathrm{BR}} / \mathbf{P}_{\mathrm{NBR}}$ that is to say, in case of very long braking time, it must be dimensioned $\mathbf{P}_{\mathrm{MB}}<$ $\mathbf{P}_{\text {NBR }}$

Figure 4.9.2.4: Generic braking cycle with triangular profile

If one of the above mentioned rules is not respected, it is necessary to increase the nominal power of the
resistor, respecting the limit of the internal braking unit (reported in table 4.9.2.4)

4.9.3. Control of the external braking power

The braking resistance average power is defined by the following formula:

$$
\mathbf{P}=0.2 \cdot \mathbf{J}_{\mathrm{tot}} \cdot \omega^{2} \cdot \mathbf{f}
$$

where: $\mathbf{P}=$ Dissipated power
$\mathbf{J}_{\text {tot }}=\quad$ Total inertia $\left(\mathrm{Kgm}^{2}\right)$
$\boldsymbol{\omega} \quad=\quad$ Max speed ($\mathrm{rad} / \mathrm{sec}$)
f $\quad=\quad$ Cycle frequency in Herz (number of cycles per second).
$\mathrm{f}=1 / \mathrm{T}_{\text {вR }}(\mathrm{sec})$

4.9.4. External resistance interaction with the system parameters

When the external braking resistance is installed it is always necessary to carry out some modifications in the parameters: "SYSTEM \backslash BRAKING UNIT".

Following are the parameters related to the braking resistance: SYSTEM \backslash BRAKING UNIT

SYS OV_CLM_LIM To set up the internal braking unit operating point.
The factory sets this parameter equal to a voltage value of 860 V (DC link continuous voltage).
The overvoltage alarm operating point is fixed at 950 V .
In case of alarm due to an overvoltage with external braking resistance, the turn-on point of the braking unit can be reduced by this parameter.
Example: setting the activation value at 830 V .

Note! Be careful not to reduce this parameter too much with main voltage supply of the drive at 460 V , else the unit will turn on for normal voltages.

SYS _OV_MAX_LIM Overvoltage alarm threshold cannot be modified

4.9.5. Choice of the thermal relay for brake resistor

Here is a procedure aimed at stating the coordination of a thermal relay for the protection of the resistor bank in case of a sudden component failure (not detected), when the DC bus power supply is continuously connected to the braking resistance.
It is important to remember that the drives are supplied with a $\boldsymbol{I}^{2} \boldsymbol{t}$ function for the resistor bank protection; such a function is in a position to avoid any possible overload but it cannot protect against component failure that might render impossible the logical control of the braking resistor current.

As stated in the dimensioning procedure for the bus braking system, the resistor bank has, with a given ambient condition, a possible instantaneous overload defined as

$$
\begin{aligned}
& \boldsymbol{E}_{\max B \boldsymbol{R}} \text { in [Joule] or as a product given by } \\
& \boldsymbol{P}_{\max _{-} B R} \boldsymbol{x} \boldsymbol{T}_{\text {max_ }_{-} B R}[\text { Joule }]
\end{aligned}
$$

supplied by the producer of the resistor.. Such parameters are able to define the resistor overload possibility in case of continuous maximum power peaks.
According to $\boldsymbol{E}_{\text {max } \boldsymbol{B R}}$ and to the peak power value, which the resistor bank is subject to, $\boldsymbol{P}_{\boldsymbol{P B R}}=\boldsymbol{V}_{\boldsymbol{B R}} / \boldsymbol{R}_{\boldsymbol{B R}}$ the maximum time for the peak power application is calculated as

$$
T_{\max B R}=E_{\max B R} / P_{P B R}
$$

Furthermore, the peak current on the resistors is $\boldsymbol{I}_{\boldsymbol{P K}}=\boldsymbol{V}_{\boldsymbol{B R}} / \boldsymbol{R}_{\boldsymbol{B R}}$

Therefore, the time/current curves of the thermal relays are must have an overload ratio requiring a thermal relay intervention time lower than $\boldsymbol{T}_{\max \boldsymbol{B R}}$.
Given that K, the overload ratio obtained from the curves, the current value to which the thermal relay has to be set is: $\boldsymbol{I}_{\text {term }}=\boldsymbol{I}_{\boldsymbol{P K}} / \boldsymbol{k}$

Now it is necessary to check that the product $\boldsymbol{V}_{B R} \boldsymbol{x} \boldsymbol{I}_{\text {term }}$ is higher than the average power, which can be dissipated on the resistor bank; such value is stated during the dimensioning procedure of the braking system.
In case the above-mentioned conditions are not satisfied, it is necessary to use a thermal relay with a time/ current feature able to obtain a K factor lower than the one stated above.

The thermal relays to be used are those coordinated for the protection of three-phase motors. In this case it is advisable to use all the three contacts which have to be connected in series to be able to break the substantial DC voltage involved.

4.10. BUFFERING THE REGULATOR SUPPLY

The power supply of the control section is provided by a switched mode power supply unit (SMPS) from the DC Link circuit. The Drive is disabled as soon as the voltage of the DC Link circuit is below the threshold value ($\mathrm{U}_{\text {Buff }}$). The regulator supply is buffered by the energy of the DC Link circuit until the limit value $\left(\mathrm{U}_{\text {min }}\right)$ is reached. The buffer time is determined by the capacitance of the DC Link capacitors. The minimum values are shown in the table below. The buffer time ($\mathrm{t}_{\text {Buff }}$) can be extended (only on 11 kW drive and higher) by connecting external capacitors in parallel (on terminal C (+ bus) and $\mathrm{D}(-$ bus)).

Table 4.10.1: DC Link Buffer Time

Inverter type	Internal capacitance $\begin{gathered} \mathbf{C}_{\text {std }} \\ {[\mu \mathrm{F}]} \\ \hline \end{gathered}$	Buffer time $\mathrm{t}_{\text {Buff }}$ (minimum value) with the internal capacitance at :		Maximum permissible external capacitance $\mathbf{C}_{\mathrm{ext}}[\mu \mathrm{~F}]$	Maximum power required by switched mode power supply $\mathbf{P}_{\text {SMPS }}$ [W]
3	220	0.165	0.25	0	65
5	330	0.24	0.37	0	65
7	330	0.24	0.37	0	65
10	830	0.62	0.95	0	65
15	830	0.62	0.95	0	65
20	1500	1:12	1.72	1500	65
30	1500	1:12	1.72	1500	65
40	1800	1.54	2.3	4500	70
55	2200	1.88	2.8	4500	70
70	3300	2.83	4.2	4500	70
80	4950	4.24	6.3	4500	70
100	4950	4.24	6.3	4500	70
125	6600	5.6	8.1	0	70
160	6600	5.6	8.1	0	70
190	9900	8.4	12.1	0	70
230	14100	12.8	17.2	0	70
300	14100	12.8	17.2	0	70

Figure 4.10.1: Buffering the Regulator Supply by Means of Additional Intermediate Circuit Capacitors

When connecting the intermediate circuit terminals C and D the AC Input side must be protected with superfast semiconductor fuses!

Formula for calculating the size of the external capacitors:

$$
\mathrm{C}_{\text {ext }}=\frac{2 \cdot \mathrm{P} \mathrm{smps} \bullet \mathrm{t}_{\text {Buff }} \bullet 10^{6}}{\mathrm{U}_{\text {Buff }}-\mathrm{U}_{\text {min }}^{2}}-\mathrm{C}_{\text {std }}
$$

$\mathrm{C}_{\text {ext }}, \mathrm{C}_{\text {std }}$	$[\mu \mathrm{F}]$	
$\mathrm{P}_{\text {SMPS }}$	$[\mathrm{W}]$	$\mathrm{U}_{\text {Buff }}=400 \mathrm{~V}$ at $\mathrm{U}_{\mathrm{LN}}=400 \mathrm{~V}$
$\mathrm{t}_{\text {Buff }}$	$[\mathrm{s}]$	$\mathrm{U}_{\text {Buff }}=460 \mathrm{~V}$ at $\mathrm{U}_{\mathrm{LN}}=460 \mathrm{~V}$
$\mathrm{U}_{\text {Buff }}, \mathrm{U}_{\text {min }}$	$[\mathrm{V}]$	$\mathrm{U}_{\text {min }}=250 \mathrm{~V}$

Calculation example

A PX-40 Drive is operated with an AC Input supply $\mathrm{U}_{\mathrm{LN}}=400 \mathrm{~V}$. A voltage failure buffer is required for max. 1.5 s .

$\mathrm{P}_{\text {SMPS }}$	70 W	$\mathrm{t}_{\text {Buff }}$	1.5 s
$\mathrm{U}_{\text {Buff }}$	400 V	$\mathrm{U}_{\text {min }}$	250 V
$\mathrm{C}_{\text {std }}$	$1800 \mu \mathrm{~F}$		
	$\mathrm{C}_{\text {ext }}=\frac{2.70 \mathrm{~W} \cdot 1.5 \mathrm{~s} \cdot 10^{6} \mu \mathrm{~F} / \mathrm{F}}{(400 \mathrm{~V})^{2}-(250 \mathrm{~V})^{2}}-1800$	$\mathrm{~F}=2154$	$\mathrm{~F}-1800 \quad \mathrm{~F}=354 \mathrm{~F}$

4.11. DISCHARGE TIME OF THE DC-LINK

Table 4.11.1: DC Link Discharge Time

Type	$\mathrm{I}_{2 \mathrm{~N}}$	Time (seconds)	Type	$\mathrm{I}_{2 \mathrm{~N}}$	Time (seconds)
3	3.5	90	70	76	90
5	4.9	150	80	90	120
7	6.5		100	110	
10	11	205	125	142	
15	15.4		160	180	
20	21.6	220	190	210	
30	28.7		230	250	
40	42	60	300	310	
55	58				

This is the minimum time that must be elapsed when a Flexmax drive is disconnected from the AC Input before an operator may service parts inside the drive to avoid electric shock hazard.

Condition
The value consider the time to turn-off for a Drive supplied at $480 \mathrm{Vac}+10 \%$, without any options, (the loads on the switching supply are the regulation card, the keypad and the 24 Vdc fans "if mounted").
The Drive is disconnected from the line.. This represents the worst case condition.

