5. SIZING CRITERIA

Because of the high performance obtained by the drive/brushless motor set, the dynamic performance of the entire system is strongly influenced by the mechanics of the system itself.

In particular, the following considerations are important:

- the degree of precision depends on the sensor and not on the motor
- the response speed depends on the transmission rigidity (mechanical passband)
- the system audible noise, sometimes very strong, does not depend on the motor and/or on the electronics, but on a mechanical design which is not suitable for the required performance.
- the motor noise is due to continuous acceleration and braking. In such conditions, motor overheating may occur, which may not be due to a too-small motor.
- the passband controlling the drive depends on the mechanics, as it is not possible to stabilize the electronics to a period less than 3 times the ring time of the system mechanical oscillations.

The choice of the mechanical transmission must be carried out, therefore, according to the application. In mandrel applications, with significant transmitted power and marginal dynamic performance, common reducer transmissions are used. In this case, that is the optimum economical choice.

In case of axis applications, where the system dynamic performance is fundamental, the required torque is often equal to the sum of the motor and load inertial torques. The use of a reduction ratio in the transmission reduces, on one side, the load inertia influence, but, on the other, it increases the motor side. In such applications, therefore, direct coupling is normally used.
With direct coupling, the system dynamics are influenced by the shaft torsional rigidity and by the relative resonance frequency. The drive and motor are capable of much higher bandwidth than the mechanics.
After choosing the motor and the transmission, it is necessary to check the application.
In case of applications whose speed and load are constant or variable for periods longer than the motor time constant, it is sufficient to check that the maximum load is within the capacity limits stated for the motor and the drive.

On the contrary, in applications where the load changes according to a faster cycle, do the following:

- Trace a cycle speed/time diagram, remembering that the reaching of a precise position or speed value requires, apart from the time set by the system limit accelerations, a settling period equal to 3 times the period of the system passband.
- Refer the system inertia and loads back to the motor axis.
- Calculate the acceleration cycle and the cycle of the relative inertial torques.
- State the cycle torque/time diagram by adding the inertial torques to the loads.
- Calculate from the torque/time diagram the cycle effective torque. If the cycle is made up of n duration segments $t_{l}, t_{2}, \ldots t_{n}$, and of their corresponding torques $C_{p}, C_{2}, \ldots C_{n}$, the cycle effective torque is given by:

$$
C_{e f f}=\sqrt{\frac{C_{1}^{2} t_{l}+C_{2}^{2} t_{2}+\ldots+C_{n}^{2} t_{n}}{t_{1}+t_{2}+\ldots+t_{n}}}
$$

- Calculate, with the same formula, the average quadratic speed.
- Calculate the cycle average torque.
- Calculate the maximum duration period of the cycle maximum torque.
- Calculate the torque required with the cycle maximum speed.
- Calculate the cycle maximum torque.

The motor and the electronic have to be checked on the basis of the obtained data.

5.1. MOTOR CHECK

The motor check phases are:

- check of the peak torque
- thermal Sizing
- electrical Sizing

Check of the demagnetization current

Such check is carried out with a direct comparison with the peak current via the formula:

$$
I_{\text {demag }}=\sqrt{2} \frac{C_{p k}}{K_{t}}
$$

where:

$$
\begin{array}{lll}
I_{d e m a g} & = & \text { motor demagnetization current } \\
C_{p k} & = & \text { cycle peak torque } \\
K_{t} & = & \text { motor torque constant }
\end{array}
$$

Check of the thermal Sizing

Check first that the point $C_{\text {eff }}, \mathrm{w}_{\text {eff }}$ is within the area of the motor continuous operating range. In particular, calculate the motor temperature increase, given by the relation:

$$
\Delta T_{\max }=\frac{65}{L_{n}}\left[\left(\frac{C_{e f f}}{T_{n}}\right)^{2} L_{n}+\left(\frac{\omega_{e f f}}{\omega_{n}}\right)^{2} L_{0}\right]
$$

where:

$$
\begin{array}{lll}
L_{n} & = & \text { motor rated losses } \\
T_{n} & = & \text { motor rated torque } \\
\omega_{\mathrm{n}} & = & \text { motor rated speed } \\
L_{0} & = & \text { motor rated losses in } \omega_{\mathrm{n}}
\end{array}
$$

If the maximum temperature is higher than the motor maximum, a bigger motor is needed.

Check of the electric Sizing

In this case, it is necessary to check that at maximum speed, the voltage required by the motor is lower or equal to that supplied by the drive with the minimum expected power supply voltage. The following relation must be satisfied:

$$
V_{\max }=\sqrt{\left(K_{e} \omega_{p k}+R_{w} \frac{C_{p k}}{K_{t}}\right)^{2}+\left(\frac{C_{p k}}{K_{t}} \frac{P N}{2} \omega_{p k} L_{n}\right)^{2}} \leq E_{\min }
$$

where:

$$
\begin{aligned}
& E_{\text {min }}=\quad \text { minimum voltage supplied by the drive } \\
& K_{e}=\text { motor voltage constant } \\
& \omega_{\mathrm{pk}}=\quad \text { cycle maximum speed } \\
& R_{\omega}=\text { motor terminal to terminal resistance } \\
& C_{p k}=\text { cycle maximum torque } \\
& K_{t}=\text { motor torque constant } \\
& P N=\text { motor pole number } \\
& L_{\omega}=\text { motor terminal to terminal inductance }
\end{aligned}
$$

If such condition is not satisfied, it is necessary to choose a motor with a winding suitable for a higher speed; in this case a higher current will be needed.

5.2. CHECK OF THE DRIVE SIZE

The drive size is chosen according to the torque to be supplied to the motor with a specific winding, from where the needed energy is derived. The thermal time constant of the drive is only a few seconds, therefore a current supply longer than 2 seconds has to be considered as continuous current.
The peak and average currents required by the drive are provided by:

$$
I_{\max }=\frac{C_{p k}}{K_{t}} \quad I_{m e d}=\frac{C_{a v e}}{K_{t}}
$$

where:

$$
\begin{aligned}
C_{p k} & =\text { cycle maximum torque } \\
C_{a v} & =\text { cycle average torque } \\
K_{t} & =\text { motor torque constant }
\end{aligned}
$$

The drive must be in a position to develop continuous and peak currents higher than the calculated values; remember that the drive maximum current must be compared to $I_{\text {max }}$ only if the relative time is lower than 2 seconds; if not, the drive must have a rated current higher than $I_{\max }^{\text {max }}$.

5.3. APPLICATION EXAMPLE: FLYING CUT

Consider a continuous belt moving cutter.
The cutter is mounted on a carriage. The belt speed is $5 \mathrm{~m} / \mathrm{s}$.
The cutter must, with a command, increase its speed till reaching the belt, get synchronized with the belt speed, keep such speed for 300 ms (cutting time), brake and return to the rest position.
The total stroke of the cutter carriage is 5 m . The cutter weighs 80 kilos plus the motor weight.

As the mechanical transmission system is rather complex, it is necessary to provide a speed stabilization time $T_{s t}$ with transients to about 150 ms .

The cutting space with a constant speed is given by:

$$
S_{t}=V_{t} \times\left(T_{t}+T_{s l}\right)=5 \times\left(300 \times 10^{-3}+150 \times 10^{-3}\right)=2.25 \mathrm{~m}
$$

The carriage will run across the remaining space during its acceleration and deceleration phase. If these two spaces are equal:

$$
S_{\text {acc }}=S_{\text {dec }}=\left(S_{\text {tot }}-S_{l}\right) / 2=(5-2.25) / 2=1.375 \mathrm{~m}
$$

The average speed during the acceleration is:

$$
V_{\operatorname{med}}=V_{\max } / 2=5 / 2=2.5 \mathrm{~m} / \mathrm{s}
$$

The acceleration and deceleration times are:

$$
T_{a c c}=S_{a c c} / V_{\text {med }}=1.375 / 2.5=550 \mathrm{~ms}
$$

The acceleration (and deceleration) is:

$$
a=V_{\max } / T_{a c c}=5 / 0.55=9.091 \mathrm{~m} / \mathrm{s}^{2}
$$

Assuming that the motor weight is about 20 kilos, the required inertial power is:

$$
F=a x\left(M_{c a r r}+M_{m o l}\right)=9.091 x(80+20)=909.091 \mathrm{~N}
$$

The total semi-cycle time is:

$$
T_{s c}=2 \times T_{a c c}+T_{s t}+T_{t}=2 \times 0.550+0.150+0.300=1.55 \mathrm{~s}
$$

The transmission is carried out via a pinion and a rack. The pinion dimensions are:
diameter $\quad \mathrm{Dp}=40 \mathrm{~mm}$
length $\quad \mathrm{hp}=30 \mathrm{~mm}$

The speed, acceleration and inertia brought to the motor axis are:

Speed:

$$
\omega_{\max }=V_{\max } /(D p / 2)=5 /(0.04 / 2)=250 \mathrm{rad} / \mathrm{s}
$$

Acceleration:

$$
m_{a}=a /\left(D_{p} / 2\right)=9.091 /(0.04 / 2)=454.545 \mathrm{rad} / \mathrm{s}^{2}
$$

Inertia:

$$
J=M_{\text {tot }} x\left(D_{p} / 2\right)^{2}=100 \times(0.04 / 2)^{2}=0.04 \mathrm{kgm}^{2}
$$

The pinion inertia is given by:

$$
J_{p}=\left(D_{p} / 2\right)^{4} \times x \quad h_{p} x \times \pi \times \delta=5.806 \times 10^{-5} \mathrm{Kgm}^{2}
$$

where δ is the density of the material forming the pinion (steel).

Check now a UL7.14.30 motor with an inertia of $0.0017 \mathrm{kgm}^{2}$.
The total inertia is:

$$
J_{t o t}=J+J_{p}+0.0017=0.04+5.806 \times 10^{-5}+0.0017=0.0417 \mathrm{kgm}^{2}
$$

Assuming a pinion efficiency equal to 0.95 , the maximum torque required to the motor is:

$$
C_{\max }=\max J_{t o t} / 0.95=454.545 \times 0.0417 / 0.95=19.98 \mathrm{Nm}
$$

The average and effective torques are therefore:

$$
\begin{aligned}
& C_{\operatorname{med}}=C_{\max } \times T_{a c c} \times 2 / T_{s c}=14.179 \mathrm{Nm} \\
& C_{e f f}=C_{\max } \times\left(2 \times T_{a c c} / T_{s c}\right)^{1 / 2}=16.832 \mathrm{Nm}
\end{aligned}
$$

As the cycle effective torque is lower than the motor rated torque, a motor of a bigger size must be chosen. Repeating the operations for a UL7.19.30 motor with an inertia of $0.0023 \mathrm{kgm}^{2}$, the obtained average torque is 14.383 Nm while the effective torque is 17.073 Nm . The motor is therefore suitable for the application with a high margin.

Given the torque constant $\mathrm{Kt}=1.77$, the average and maximum current absorbed by the motor are:

$$
\begin{aligned}
& I_{\max }=C_{\max } / K_{t}=11.4 \mathrm{~A} \\
& I_{\text {med }}=C_{\text {med }} / K_{t}=8.1 \mathrm{~A}
\end{aligned}
$$

The drive size to be used with the present application is therefore $\mathrm{XVy}-10-20$.

6. MAINTENANCE

6.1. CARE

The Flexmax drive series must be installed according to the relevant installation regulations. They do not require any particular maintenance. They should not be cleaned with a wet or moist cloth. The power supply must be switched off before cleaning.

6.2. SERVICE

The screws of all terminals on the drive should be re-tightened two weeks after initial commissioning.
This should be repeated each year. If the drives have been stored for more than three years, the capacitance of the intermediate circuit capacitors may have been impaired. Before commissioning these drives, it is advisable to supply power to the drives for at least two hours in order to regain the capacitor original ratings. To this purpose apply an input voltage without applying any load on the output.
After these steps, the drive is ready to be installed without limits.

6.3. REPAIRS

Repairs of the drive should only be carried out by qualified personnel (suggested by the manufacturer).
If you carry out a repair on your own, observe the following points:

- When ordering spare parts do not only state the drive type but also the drive serial number. It is also useful to state the type of the regulation card and the system software version.
- When changing the cards ensure that the positions of switches and jumpers are observed!

6.4. CUSTOMER SERVICE

For customer service, please refer to your Powertec Sales office, distributor, or service agent.

7. TROUBLESHOOTING

FIGURE 7.1: LED STATUS AND KEYPAD

In case an alarm occurs, the LED at the top-right is illuminated red. In such a case the alarm code is shown on the keypad display and can be looked up in the manual. If the code is not displayed, push enter to see the code, to clear the alarm, turn off the drive enable and push enter twice to reset the drive.

The default for the keypad on power up is to dispaly speed (n) and load (i) in rpm and amps. Pushing M (Menu) will change the display to the parameter mode, showing the Menu number and the parameter number on the first line and the value of the parameter on the second line. See the keypad addendum for menu structure and number identification, or look at the menu structure in the WinPX tool shipped with every drive. This is a valuable tool to see and learn the menu structure even if you choose not to use the computer connection to the drive itself.

Pushing M (Menu) will result in highlighting the "M". Using the UP and DOWN keys will change the menu number. Pushing M (Menu) again will result in the highlight moving the "P". Using the UP and DOWN keys will change the parameter number. Pushing E (Enter) will highlight the rightmost number of the parameter, use the UP and DOWN keys to set it and push E (Enter), this will move the cursor to the next position, etc. When all the digits have been entered, the next push of the E (Enter) will put the new value in ACTIVE memory only. If the value is to be saved in permanent memory, push M (Menu) until " P " is highlighted, then push M again to display an " S " in the left side of the second line. Depress Enter to save the parameter to permanent memory.

Code 00001 Error n. 1 BRIDGE DESATURATION
Short circuit on the motor winding or on the power bridge.

Code 00010 Error n. 2 OVERCURRENT
Overcurrent protection intervention.
The cause could be an incorrect setting of the current regulator gains as compared to the application.

Code	00011	Error n. 3 DC LINK OVERVOLTAGE Overvoltage on the intermediate circuit. The braking resistance is not connected in the right way or it is open. The threeshold is 950 V .
Code	00100	Error n. 4 heatsink overtemp Drive thermal protection. The working cycle is too high for the drive size.
Code	00101	Error $\mathbf{n} .5$ MODULE JUNCTION OVERTEMP Thermal protection of the power module. The working cycle is too high for the drive size.
Code	00110	Error $\mathbf{n} .6$ BRAKE DESATURATION Short circuit on the braking resistance.
Code	00111	Error n. 7 MOTOR OVERTEMP Intervention of the motor thermal protection. Overtemperature on the motor winding or PTC sensor not connected to the drive.
Code	01000	Error n. 8 AUX POWER UNDERVOLT Too low power supply voltage on the regulation circuit.
Code	01001	Error n. 9 DSP PROG ERROR Firmware error.
Code	01010	Error n. 10 Firmware error. PRG 16KHZ OVERTIME
Code	01011	Error n. 11 INVALID FLASH PARMS The parameter value is not recognized. Do the Parameter Saving and Drive Reset commands with the correct parameters.
Code	01100	Error n. 12 BAD FLASH MEMORY Firmware error.
Code	01101	Error n. 13 BRAKE OVERPOWER The internal braking resistance is too warm because of a too high working cycle. Wait 30 seconds and give the Drive Reset command. The resistance temperature is calculated by an algorithm of the drive.
Code	01110	Error n. 14 NTC DISCONNECTED Alarm intervention on the drive internal NTC sensor; such sensor measures the temperature. The NTC sensor could be damaged or the circuit could be interrupted.
Code	01111	Error n. 15 BRAKE ERROR Intervention of braking alarm.

Code 10000	Error n. 16 Firmware error.	LOCK DRIVE	
Code 10001	Error n. 17	DI ENCODER COUNT	

The number of pulses of the feedback digital encoder between two index pulses (zero slot) is not correct. Check the Encoder pulses parameter, the encoder wiring and the ground and shielding connections.

Code 10010 Error n. 18 AD ENCODER COUNT
The number of pulses of the feedback sinusoidal encoder between two index pulses (zero slot) is not correct. Check the Encoder pulses parameter, the encoder wiring and the ground and shielding connections.
Code 10011 Error n. 19 ENCODER SIMULATION
Encoder simulation alarm. Check the encoder simulation parameters.

Code 10100 Error n. 20 UNDERVOLTAGE

The function is only checked when the drive is enabled. The error is when the DC bus voltage is less than 400 V (default setting). The threeshold can be modified setting the system parameter 18120 "SYS_UV_V_MIN".

Code 11001 Error n. 25 EB-BUS LOSS
It gets automatically active if the bus communication at a HS or VHS level is not present.

Code 11010 Error n. 26 EB-GENERIC FAIL

It gets active to signal any card problem: hardware, software, configuration problem etc. In order to state the real problem causing such a condition, see the "EB FAIL CAUSE" parameter.

Code 11011 Error n. 27 SEQUENCE ERROR

It gets active when the drive is power supplied with an active enable input.

Code 11100

Code 11101
Error n. 29 POSITION ERROR
It occurs in position slave and electrical line shaft slave modes, when the position error is bigger than 8.388 .608 counts (equal to 512 encoder pulses). The threeshold level can be modified by setting the system parameter 18108 "SYS_POS_ERR_MAX".

Code 11111
Error n. 31 EXTERNAL FAULT
External alarm. A digital input has been programmed as an external alarm, but +24 V is not available on this terminal.

The alarms 23 and 24 are programmable and they are dedicated only to MDPLC firmware applications.

8. SETTINGS AND COMMISSIONING

8.1. MENU STRUCTURE

MONITOR					
	20040	ACTUAL SPEED			
	20041	MOTOR CURRENT			
	20043	DC LINK VOLTAGE			
	20044	DRIVE TEMPERATURE			

DRIVE PARAMETERS						
	20000	DRIVE MAXIMUM CURRENT				
	20021	DRIVE ADDRESS				
	20023	DRIVE CONFIGURATION				
20024	DRIVE BAUDRATE					
20025	DRIVE SERIAL CONFIG					
20026	DRIVE SER DELAY TIME					
18110	DRIVE FAST LINK					
20022	DRIVE FIRMWARE					
29004	DRIVE ACTUAL CONFIG					

MOTOR PARAMETERS

20002	MOTOR NUMBER OF POLES
20003	MOTOR MAXIMUM SPEED

ENCODER PARAMETERS

20010	ENCODER TYPE
20011	ENCODER PULSES
20012	ENCODER SUPPLY

RAMP		
	21102	RAMP ACC CW
21103	RAMP ACC CCW	
	21104	RAMP DEC CW
21105	RAMP DEC CCW	
21210	RAMP ENABLE	
21212	RAMP OUTPUT	

SPEED		
21200	SPEED REF1	
	21201	SPEED REF2
	21204	SPEED MAX POS
	21205	SPEED MAX NEG
	SPEED THR	
21207	SPEED THR OFFSET	
21213	SPEED THR DELAY	

CURRENT			
	22000	T CURR REF1	
22001	T CURR REF2		
	22004	T CURR LIM +	
	22005	T CURR LIM -	
22007	T CURR THR		
22009	MAX SPEED CUR LIM		
22010	CURR THR DELAY		

SPEED / POSITION GAINS

23000	GAIN SPEED
23001	GAIN POS
23002	GAIN INT

DIGITAL INPUTS

20100	DIGITAL INPUT 0
20101	DIGITAL INPUT 1
20102	DIGITAL INPUT 2
20103	DIGITAL INPUT 3
20104	DIGITAL INPUT 4
20105	DIGITAL INPUT 5
20106	DIGITAL INPUT 6
20107	DIGITAL INPUT 7
20162	DIG IN NEG
20163	DIG IN STATUS

DIGITAL EXPANSION INPUTS

20150	EXP DIGIT INPUT 0
20151	EXP DIGIT INPUT 1
20152	EXP DIGIT INPUT 2
20153	EXP DIGIT INPUT 3
20154	EXP DIGIT INPUT 4
20155	EXP DIGIT INPUT 5
20156	EXP DIGIT INPUT 6
20157	EXP DIGIT INPUT 7

VIRTUAL DIGITAL INPUTS

20170	VIRT DIGIT INPUT 0
20171	VIRT DIGIT INPUT 1
20172	VIRT DIGIT INPUT 2
20173	VIRT DIGIT INPUT 3
20174	VIRT DIGIT INPUT 4
20175	VIRT DIGIT INPUT 5
20176	VIRT DIGIT INPUT 6
20177	VIRT DIGIT INPUT 7
20178	VIRT DIGIT INPUT 8
20179	VIRT DIGIT INPUT 9
20180	VIRT DIGIT INPUT 10
20181	VIRT DIGIT INPUT 11
20182	VIRT DIGIT INPUT 12
20183	VIRT DIGIT INPUT 13
20184	VIRT DIGIT INPUT 14
20185	VIRT DIGIT INPUT 15
20186	VIRT DI STATUS
20187	VIRT DI AT START
20188	VIRT DI AT DISABLE
20189	VIRT DI RESET AT FAIL

DIGITAL OUTPUTS

20200	DIGITAL OUTPUT 0
20201	DIGITAL OUTPUT 1
20202	DIGITAL OUTPUT 2
20203	DIGITAL OUTPUT 3
20204	DIGITAL OUTPUT 4
20205	DIGITAL OUTPUT 5
20206	DIGITAL OUTPUT 6
20207	DIGITAL OUTPUT 7
20254	DIG OUT NEG
20255	DIG OUT STATUS

VIRTUAL DIGITAL OUTPUTS

20270	VIRT DIGIT OUTPUT 0
20271	VIRT DIGIT OUTPUT 1
20272	VIRT DIGIT OUTPUT 2
20273	VIRT DIGIT OUTPUT 3
20274	VIRT DIGIT OUTPUT 4
20275	VIRT DIGIT OUTPUT 5
20276	VIRT DIGIT OUTPUT 6
20277	VIRT DIGIT OUTPUT 7
20278	VIRT DIGIT OUTPUT 8
20279	VIRT DIGIT OUTPUT 9
20280	VIRT DIGIT OUTPUT 10
20281	VIRT DIGIT OUTPUT 11
20282	VIRT DIGIT OUTPUT 12
20283	VIRT DIGIT OUTPUT 13
20284	VIRT DIGIT OUTPUT 14
20285	VIRT DIGIT OUTPUT 15
20289	VIRT DO RESET AT FAIL
20290	VIRT DO SET AT FAIL
20286	VIRT DO STATUS

DIGITAL EXPANSION OUTPUTS

20250	EXP DIGIT OUTPUT 0
20251	EXP DIGIT OUTPUT 1
20252	EXP DIGIT OUTPUT 2
20253	EXP DIGIT OUTPUT 3
20256	EXP DIG OUT STATUS
txv0270	

ANALOG INPUTS

20300	ANALOG INPUT 0
20301	ANALOG INPUT 1
20302	ANALOG INPUT 2

ANALOG INPUT 0

20310	AN INPUT READ 0
20320	AN INPUT OFFSET 0
20330	AN INPUT ZPOS 0
20340	AN INPUT ZNEG 0
20350	AN INPUT SCALE 0
20360	AN INPUT VALUE 0

ANALOG INPUT 1

20311	AN INPUT READ 1
20321	AN INPUT OFFSET 1
20331	AN INPUT ZPOS 1
20341	AN INPUT ZNEG 1
20351	AN INPUT SCALE 1
20361	AN INPUT VALUE 1

ANALOG OUTPUTS

20400	ANALOG OUTPUT 0
20401	ANALOG OUTPUT 1
20402	ANALOG OUTPUT 2
20403	ANALOG OUTPUT 3

ANALOG OUTPUT 0

20410	AN OUTPUT WRITE 0
20420	AN OUTPUT SCALE 0
20430	AN OUTPUT OFFSET 0
20440	AN OUTPUT VALUE 0

ANALOG OUTPUT 1

20411	AN OUTPUT WRITE 1
20421	AN OUTPUT SCALE 1
20431	AN OUTPUT OFFSET 1
20441	AN OUTPUT VALUE 1

ANALOG OUTPUT 2

20412	AN OUTPUT WRITE 2
20422	AN OUTPUT SCALE 2
20432	AN OUTPUT OFFSET 2
20442	AN OUTPUT VALUE 2

ANALOG OUTPUT 3

20413	AN OUTPUT WRITE 3	
20423	AN OUTPUT SCALE 3	
20433	AN OUTPUT OFFSET 3	
20443	AN OUTPUT VALUE 3	

ENCODER REPETITION

20030	ENC PULSES REV
20032	GAIN INDEX STEP
20033	INDEX OFFSET
20034	INDEX OFFSET READ
20035	ENABLE ENC REPETITION

JOG FUNCTION

21000	JOG LIMIT
21001	JOG SET REFERENCE
21002	JOG REFERENCE
21003	JOG ACC CW
21004	JOG ACC CCW
21005	JOG DEC CW
21006	JOG DEC CCW

MULTI SPEED FUNCTION

21301	MULTI SPEED 1
21302	MULTI SPEED 2
21303	MULTI SPEED 3
21304	MULTI SPEED 4
21305	MULTI SPEED 5
21306	MULTI SPEED 6
21307	MULTI SPEED 7
21310	MULTI SPEED INDEX
21311	MULTI SPEED SERIAL

MULTI RAMP FUNCTION

POSITION PARAMETER

30010	POS ACC CW
30011	POS ACC CCW
30012	POS DEC CW
30013	POS DEC CCW
30014	POS SPEED
30015	POS CURRENT
30094	POS STOP DEC
30016	POS ACTUAL POS

POS FUNCTION

30000	MEAS UNIT PER REV
30017	POS MINIMUM PRESET
30018	POS MAXIMUM PRESET
30055	POS MINIMUM ABS
30056	POS MAXIMUM ABS
30090	POS PRESET INDEX
30092	POS PRESET SERIAL
30091	POS ABS
30093	POS CONFIGURATION
30080	POS DEST REV
30081	POS DEST POS

POS THR CONFIG

30050	POS ABSTHR
30051	POS THR
30052	POS THROFF
30053	POS THR NEAR 1
30054	POS THR NEAR 2

POS PRESET [0]

30100	POS PRESET $[0]$
30200	POS SPEED $[0]$
30300	POS ACC $[0]$
30400	POS DEC $[0]$

POS PRESET [1]

30101	POS PRESET [1]
30201	POS SPEED [1]
30301	POS ACC [1]
30401	POS DEC [1]

POS PRESET [2]

30102	POS PRESET [2]
30202	POS SPEED [2]
30302	POS ACC [2]
30402	POS DEC [2]

POS PRESET [3]		
	30103	POS PRESET [3]
	30203	POS SPEED [3]
	30303	POS ACC [3]
	30403	POS DEC [3]

POS PRESET [4]		
	30104	POS PRESET [4]
	30204	POS SPEED [4]
	30304	POS ACC [4]
	30404	POS DEC [4]

POS PRESET [5]

30105	POS PRESET [5]
30205	POS SPEED [5]
30305	POS ACC [5]
30405	POS DEC [5]

POS PRESET [6]

30106	POS PRESET [6]
30206	POS SPEED [6]
30306	POS ACC [6]
30406	POS DEC [6]

POS PRESET [7]

30107	POS PRESET [7]
30207	POS SPEED [7]
30307	POS ACC [7]
30407	POS DEC [7]

POS PRESET [8...63]

30108	POS PRESET [8]
$301 .$.	POS PRESET [..]
30163	POS PRESET [63]

ZERO FOUND CONFIG

30020	POS ACC CW 0
30021	POS ACC CCW 0
30022	POS DEC CW 0
30023	POS DEC CCW 0
30024	POS SPEED MAX 0
30025	POS SPEED REFERENCE 0
30027	POS SPEED FINE 0
30030	POS ZPOS
30031	POS 0 FOUND
30035	POS ZREV OFFSET
30029	POS ZREV

ZERO RETURN CONFIG

30026	POS SPEED RET 0
30032	POS ACC RET 0
30033	POS DEC RET 0
30034	POS DSPEED RET 0

ELECTRICAL LINE SHAFT

32000	ELS PULS REV MAST
32008	ELS DELTA TIME
32009	ELS MASTER SEL
32014	ELS DELTA RATIO
32020	ELS SLIP
19113	POSITION ERROR

ELECT LINE SHAFT RATIO

32001	ELS RATIO [0]
32002	ELS RATIO [1]
32003	ELS RATIO [2]
32004	ELS RATIO [3]
32005	ELS ACT RATIO
32006	ELS RATIO INDEX
32007	ELS RATIO SERIAL

ELECT LINE SHAFT R BAND

32100	ELS RB SPEED MAX
32104	ELS RB SPEED REF
32101	ELS RB TIME
32102	ELS RB ACC
32103	ELS RB DEC

FAILURE REGISTER

24000	DRIVE FAULT
24001	EXTERNAL FAULT
24002	BRIDGE DESATURATION
24003	OVERCURRENT
24004	DCLINK OVERVOLTAGE
24005	HEATSINK OVERTEMP
24006	MOD JUNCT OVERTEMP
24007	BRAKE DESATURATION
24008	MOTOR OVERTEMP
24009	AUX POWER UNDERVOLT
24010	DSP PROG ERROR
24011	PRG 16KHZ OVERTIME
24012	INVALID FLASH PARMS
24013	BAD FLASH DEVICE
24014	BRAKE OVERPOWER
24015	NTC DISCONNECTED
24016	BRAKE ERROR
24017	LOCK DRIVE
24018	DI ENCODER COUNT
24019	AD ENCODER COUNT
24020	ENCODER SIMULATION
24021	UNDERVOLTAGE
24026	EB-BUS LOSS
24027	EB-GENERIC FAIL
24028	SEQUENCE ERROR
24029	FAST LINK ERROR
24030	POSITION ERROR
24040	FIRST ALARM

FAILURE QUEUE		
	24200	DRIVE FAULT (0)
	24201	DRIVE FAULT TIME (0) sec.
	24220	DRIVE FAULT (1)
	24221	DRIVE FAULT TIME (1) sec.
	24240	DRIVE FAULT (2)
	24241	DRIVE FAULT TIME (2) sec.
	24260	DRIVE FAULT (3)
	24261	DRIVE FAULT TIME (3) sec.
	24280	DRIVE FAULT (4)
	24281	DRIVE FAULT TIME (4) sec.
	24300	DRIVE FAULT (5)
	24301	DRIVE FAULT TIME (5) sec.
	24320	DRIVE FAULT (6)
	24321	DRIVE FAULT TIME (6) sec.
	24340	DRIVE FAULT (7)
	24341	DRIVE FAULT TIME (7) sec.
	24360	DRIVE FAULT (8)
	24361	DRIVE FAULT TIME (8) sec.
	24380	DRIVE FAULT (9)
	24381	DRIVE FAULT TIME (9) sec.
	24400	DRIVE FAULT (10)
	24401	DRIVE FAULT TIME (10) sec.
	24420	DRIVE FAULT (11)
	24421	DRIVE FAULT TIME (11) sec.
	24440	DRIVE FAULT (12)
	24441	DRIVE FAULT TIME (12) sec.
	24460	DRIVE FAULT (13)
	24461	DRIVE FAULT TIME (13) sec.
	24480	DRIVE FAULT (14)
	24481	DRIVE FAULT TIME (14) sec.
	24500	DRIVE FAULT (15)
	24501	DRIVE FAULT TIME (15) sec.
	24520	DRIVE FAULT (16)
	24521	DRIVE FAULT TIME (16) sec.
	24540	DRIVE FAULT (17)
	24541	DRIVE FAULT TIME (17) sec.
	24560	DRIVE FAULT (18)
	24561	DRIVE FAULT TIME (18) sec.
	24580	DRIVE FAULT (19)
	24581	DRIVE FAULT TIME (19) sec.
	24600	DRIVE FAULT (20)
	24601	DRIVE FAULT TIME (20) sec.
	24620	DRIVE FAULT (21)
	24621	DRIVE FAULT TIME (21) sec.
	24640	DRIVE FAULT (22)
	24641	DRIVE FAULT TIME (22) sec.
	24660	DRIVE FAULT (23)
	24661	DRIVE FAULT TIME (23) sec.
	24680	DRIVE FAULT (24)
	24681	DRIVE FAULT TIME (24) sec.

SERVICE

8.2. PC CONFIGURATOR

The configurator WIN PX is a program supplied together with the product.
Its installation requires a PC with a Windows 95 system, with minimum 8 meg RAM. Contact Powertec if you have another operating system.
The configurator communicates with the drive using the Slink-3 protocol.

Together with the drive parameterization, the configurator allows downloading the firmware in order to create some personalized applications using the MDPLC development environment.

8.3. COMISSIONING

Before powering up the drive, carry out the following verifications:

- Check the connections with the line L1, L2, L3
- Check the connections with the motor U, V, W
- Check the breaking resistance connection (if present)
- Check the connections with the encoder S2 and/or S1 (if present)
- Check the input connection 24 Vdc
- Check the I/O connections
- Check all the drive and motor ground connections

After having checked as shown above, it's possible now to power the drive; then check:

- Line voltage (max permissible voltage 460Vac $+10 \%$)
- Voltage of the intermediate circuit DC bus (270-350 for input voltage 230Vac, 480-650Vdc for input voltage $400 \mathrm{Vac}, 550-715$ for input voltage 460 Vac ; if the measured voltage is not in the indicated range, check the line voltage)
- Regulation input voltage 24 Vdc (term. 19-20 of the connector C 1) if the voltage is lower than 24 Vdc , the drive may not work, if the voltage is higher than 30 Vdc the drive could be damaged.

8.3.1. Connection with the PC

The drive is delivered from the factory with a standard configuration in the speed mode. The input and output state is already programmed as in the following example; therefore user is able to start up the drive control and run the motor immediately (when used a motor series BM with encoder sin.cos at 2048 p/r).

To perform the correct parameter settings, it's necessary to use the configurator WIN PX. Connect the drive to your PC using the serial communication as suggested in the manual; check that the termination resistance switch is on the 120 ohm position. In the Windows menu Start/Programs/WIN PX execute the command WinPX to start up the configurator. After starting the configurator, open from the File/Open menu the Basic Vx_xxx.par file, where x_xxx states the version of the Basic firmware.
This file includes the list of all the parameters resident in the drive. The data is split into several windows and a menu tree, typical of the Windows system, therefore easy to understand. When the Basic file has opened, the PC will connected automatically with the drive and communicate. If you see no errors after opening the Basic file, the drive is communicating with the PC (for commands and configurators specifications refer to the instruction manual of WIN PX).

8.3.2. Essential parameters set up

The essential parameters to check before starting the motor are:

MENU	PARAMETER
DRIVE CONFIGURATION	DRIVE MAXIMUM CURRENT
MOTOR PARAMETERS	MOTOR NUMBER OF POLES
	MOTOR MAXIMUM SPEED
ENCODER PARAMETERS	ENCODER TYPE
	ENCODER PULSES
	ENCODER SUPPLY

It's now possible to enable the drive and rotate the motor in the function of the inputs configuration and setup. As an example three types of configurations are described.

8.3.3. Speed mode configuration example

8.3.4. Position mode configuration example

8.3.5. Electrical line shaft mode configuration example

UNDER CONSTRUCTION

8.4. DOWNLOAD FIRMWARE

The standard firmware loaded at the factory is an application called Basic.
The Basic application firmware is composed of 2 files.

- the low level firmware or firmware library (PX Basic VX_XX.sre).
- the parameters file, used by the user for the drive application settings (PX Basic VX_XX.par).

While firmware in the drive can be downloaded in the field by a customer when necessary, it is normally never required, and certainly not for routine use or configuration of the drive. Your Flexmax drive has been set up and run at the factory with the motor you purchased. Virtually nothing is required in the way of set up unless you want to change something that is factory standard default. We encourage you to wire the drive and at least temporarily use the default digital input setup to verify proper operation before changing any program parameters at all

1) To perform a firmware upgrade refer to this AFTER contacting the factory.

- Open the configurator WIN PX.
- Enable communication with the drive from the menu "Target/connect".
- From the menu "Service/Load firmware" select the command "Browse".
- The file PX Basic VX_XX.sre of the last version will be indicated default, choose it and select the command "Load".
- At this time the firmware download is activated, and the data quantity (number Bytes) transferred is shown on the screen. The Basic is composed of nearly 90.000 bytes and the download time is around 60 sec.
- Reset the drive with the command of reset from configurator, or turn off and on the 24 vdc supply.
- In the menu "File/Open" open the PX Basic VX_XX.par file.
- In the menu "Parameters/Write all" copy all the system parameters in the drive.
- In the menu "Parameters/Save parameters" save all the parameters in the drive.
- Reset the drive with the command "reset" configurator, or turn off and on.

At this time the firmware updating has finished, now the user can proceed setting the drive as desired.
2) To set up the drive in the MDPLC mode: Use this ONLY after being directed by the factory.

- Open the configurator WIN PX.
- Enable communication with the drive in the menu "Target/connect".
- In the menu "Service/Load firmware" select the command Browse.
- Search the file Vplc.sre and select the command Load.
- During the firmware download, the screen displays the data quantity (number Bytes) transferred.
- Reset the drive with the command of reset from configurator, or turn off and on the 24 vdc supply.
- In the menu "File/Open" open the Parameter MDPLC.par file .
- In the menu "Parameters/Write all" copy all the parameters in the drive.
- In the menu "Parameters/Save parameters" save all the parameters in the drive.
- Reset the drive with the command "reset", or turn off and on the 24 vdc supply.

Now the drive is set up in the MDPLC mode and it's ready to receive the dedicated application created by the specific program.

Abstract

Note ! The drive can be set up in the MDPLC mode only if the user has previously executed the installation of the program in his own PC. That program, distributed with CDRom, includes, as well as the compiler IEC1131, and the firmware file Basic VX_XX.sre.

8.5. ENCODER SIN.COS PHASING

UNDER CONSTRUCTION

8.6. RESOLVER PHASING

1) Free the motor shaft from possible mechanical couplings, in order to let it rotate freely. Via the Flexmax WinPX program set the Drive configuration (20023) parameter to ENCODER PHASING.
2) After writing the parameter, give the SAVE and RESET command. (lightning bolt)
(With this functioning condition, the digital input 0 is temporarily defaulted to the ENABLE command while the digital input 1 is temporarily defaulted to the RESET command regardless of your specific settings). Set current limit plus and minus (current menu -60- param T Curr Lim+ and T Curr Lim -) to a value not exceeding 50% of the motor rated current.
3) Enable digital input 0 (apply +24 V .) The motor rotates in a clockwise direction, seen from the motor shaft side, it will energize and lock on a motor pole, then rotate some part of a revolution and is then torquestopped in a fixed point (make sure that the motor rotates in a clockwise direction, otherwise check the wiring). The shaft will sit in this position.
4) Save the parameters BEFORE disabling the drive. (Click on the IC chip symbol)
5) Change the Drive configuration (20023) parameter to Speed (or what you desire). Change the current limits back to the original settings, not to exceed 150% of the motor nameplate current.
6) Give a drive-reset command via the digital input 1, or reset using the lightning symbol. Answer yes to all the questions in the pop-up windows.
7) The offset of the resolver is now stored in permanent memory and does not ever have to be set again unless the memory is rewritten with another value. Of course any maintenance in the future may require resetting this index.
8) Make certain you save your file on the computer by clicking File/Save or by clicking the diskette symbol. This way, even a replacement drive can be downloaded with the identical file.

8.7. DIGITAL ENCODER + HALL SENSOR PHASING

Procedure for performing the phasing of a digital encoder + Hall traces. This has already been done by the factory for any drive ordered for a particular motor. There is no need to do this unless the motor has been repaired, encoder replaced or some other situation.
In order to perform such a procedure it is necessary to enable the Motor window function of the Win PX configurator and to pull the HA POSITION (19022) parameter: Service $->$ serv. HA encoder $->$ HA POSITION menu.
The encoder configuration (encoder type parameter) has to be digital+hall.
Make sure that the drive has been disabled.

1) Free the motor shaft from possible mechanical couplings, in order to let it rotate freely.

Via the Flexmax WinPX program set the Drive configuration (20023) parameter to ENCODER PHASING.
2) After writing the parameter, give the SAVE and RESET command. (lightning bolt)
(With this functioning condition, the digital input 0 is temporarily defaulted to the ENABLE command while the digital input 1 is temporarily defaulted to the RESET command regardless of your specific settings). Set current limit plus and minus (current menu -60- param T Curr Lim+ and T Curr Lim -) to a value not exceeding 50% of the motor rated current.
3) Enable digital input 0 (apply +24 V .) The motor rotates in a clockwise direction, seen from the motor shaft side, it will energize and lock on a motor pole, then rotate some part of a revolution and is then torquestopped in a fixed point (make sure that the motor rotates in a clockwise direction, otherwise check the wiring). The shaft will sit in this position.
4) Save the parameters BEFORE disabling the drive. (Click on the IC chip symbol)
5) Change the Drive configuration (20023) parameter to Speed (or what you desire). Change the current limits back to the original settings, not to exceed 150% of the motor nameplate current.
6) Give a drive-reset command via the digital input 1, or reset using the lightning symbol. Answer yes to all the questions in the pop-up windows.
7) The offset of the encoder is now stored in permanent memory and does not ever have to be set again unless the memory is rewritten with another value. Of course any maintenance in the future may require resetting this index.
8) Make certain you save your file on the computer by clicking File/Save or by clicking the diskette symbol. This way, even a replacement drive can be downloaded with the identical file.

